Search results for "Time discretization"

showing 4 items of 4 documents

Stochastic Galerkin method for cloud simulation

2018

AbstractWe develop a stochastic Galerkin method for a coupled Navier-Stokes-cloud system that models dynamics of warm clouds. Our goal is to explicitly describe the evolution of uncertainties that arise due to unknown input data, such as model parameters and initial or boundary conditions. The developed stochastic Galerkin method combines the space-time approximation obtained by a suitable finite volume method with a spectral-type approximation based on the generalized polynomial chaos expansion in the stochastic space. The resulting numerical scheme yields a second-order accurate approximation in both space and time and exponential convergence in the stochastic space. Our numerical results…

010504 meteorology & atmospheric sciencesComputer scienceuncertainty quantificationQC1-999cloud dynamicsFOS: Physical sciencesCloud simulation65m15010103 numerical & computational mathematics01 natural sciencespattern formationMeteorology. ClimatologyFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematicsStochastic galerkin0105 earth and related environmental sciencesnavier-stokes equationsPhysics65m2565l05Numerical Analysis (math.NA)65m06Computational Physics (physics.comp-ph)stochastic galerkin method35l4535l65finite volume schemesQC851-999Physics - Computational Physicsimex time discretization
researchProduct

Operator splitting methods for American option pricing

2004

Abstract We propose operator splitting methods for solving the linear complementarity problems arising from the pricing of American options. The space discretization of the underlying Black-Scholes Scholes equation is done using a central finite-difference scheme. The time discretization as well as the operator splittings are based on the Crank-Nicolson method and the two-step backward differentiation formula. Numerical experiments show that the operator splitting methodology is much more efficient than the projected SOR, while the accuracy of both methods are similar.

Backward differentiation formulaMathematical optimizationPartial differential equationDiscretizationApplied MathematicsFinite difference methodSemi-elliptic operatorTime discretizationValuation of optionsComplementarity theoryLinear complementarity problemCrank–Nicolson methodOperator splitting methodAmerican optionMathematicsApplied Mathematics Letters
researchProduct

An IMEX-Scheme for Pricing Options under Stochastic Volatility Models with Jumps

2014

Partial integro-differential equation (PIDE) formulations are often preferable for pricing options under models with stochastic volatility and jumps, especially for American-style option contracts. We consider the pricing of options under such models, namely the Bates model and the so-called stochastic volatility with contemporaneous jumps (SVCJ) model. The nonlocality of the jump terms in these models leads to matrices with full matrix blocks. Standard discretization methods are not viable directly since they would require the inversion of such a matrix. Instead, we adopt a two-step implicit-explicit (IMEX) time discretization scheme, the IMEX-CNAB scheme, where the jump term is treated ex…

Mathematical optimizationimplicit-explicit time discretizationDiscretizationStochastic volatilityApplied Mathematicsta111Linear systemLU decompositionMathematics::Numerical Analysislaw.inventionComputational MathematicsMatrix (mathematics)stochastic volatility modelMultigrid methodlawValuation of optionsjump-diffusion modelJumpoption pricingfinite difference methodMathematicsSIAM Journal on Scientific Computing
researchProduct

Efficient Time Integration of Maxwell's Equations with Generalized Finite Differences

2015

We consider the computationally efficient time integration of Maxwell’s equations using discrete exterior calculus (DEC) as the computational framework. With the theory of DEC, we associate the degrees of freedom of the electric and magnetic fields with primal and dual mesh structures, respectively. We concentrate on mesh constructions that imitate the geometry of the close packing in crystal lattices that is typical of elemental metals and intermetallic compounds. This class of computational grids has not been used previously in electromagnetics. For the simulation of wave propagation driven by time-harmonic source terms, we provide an optimized Hodge operator and a novel time discretizati…

ta113crystal structureElectromagneticsDiscretizationApplied Mathematicsta111Mathematical analysisFinite differenceFinite-difference time-domain methodDegrees of freedom (statistics)harmonic Hodge operatordiscrete exterior calculusmesh generationComputational Mathematicssymbols.namesakeDiscrete exterior calculusMaxwell's equationsMaxwell's equationsMesh generationnonuniform time discretizationsymbolsMathematicsSIAM Journal on Scientific Computing
researchProduct